Oups, j'ai oublié ...
En lisant le blogue de mon ami Nat Banting, je suis tombé sur une routine mathématique fort intéressante: "Oups j'ai oublié" ou OJO pour faire plus court. Fawn Nguyen en a aussi parlé sur Twitter:
Ce qui fait de "Oups, j'ai oublié…" une excellente routine selon Nat:
Elle fonctionne dans tous les domaines. Mes routines préférées sont celles qui peuvent être largement adaptées pour aborder de nombreux résultats mathématiques. Vous pouvez oublier des détails essentiels sur l'algèbre, les nombres, les probabilités, la géométrie, etc. etc. etc. Tout ce que vous voulez, je l'oublie !
Cela fonctionne pour tous les niveaux scolaires. En général, la mise en scène devient plus transparente à mesure que l'on avance dans les classes, mais j'ai réussi à faire illusion dans une salle remplie de chercheurs en enseignement des mathématiques et de mathématiciens de recherche à l'Institut Fields en 2020. (La vidéo de la conférence se trouve sur ce lien. Faites défiler jusqu'à 28:15 pour voir la mise en scène).
L'apprenant n'est jamais à blâmer. Ce n'est à cent pour cent pas leur faute si le problème s'est transformé. En fait, les élèves adorent soudainement discuter de la façon dont leurs stratégies ont été ruinées parce que c'était hors de leur contrôle. Le blâme est détourné vers la tâche elle-même ou vers l'enseignant. Je porte cette affliction de tout mon cœur, mais je trouve que le fait de jouer la comédie et l'incompétence à parts égales, satisfait généralement leur dégoût.
Accentue la flexibilité mathématique. Les routines sont conçues pour apporter une once de familiarité dans la classe ; cependant, toute routine risque de devenir un rituel. C'est, pour moi, le piège des routines en classe : si elles deviennent trop familières, elles deviennent mécaniques. L'OJO attire l'attention sur les différences et les moyens de les aborder. Elle favorise naturellement une attitude ouverte et flexible face à ce qui est mathématiquement possible.
C'est Fawn qui le dit.
La structure de la routine
Une OJO contient 2 parties: un lancement et une liste.
Le lancement est le point de départ de la routine. Plus le lancement est général, plus il est possible de modifier les choses au fur et à mesure du déroulement de la routine. Généralement, le lancement est assez exigeant en soi, demandant aux élèves de construire ou de concevoir un objet mathématique (pensez au niveau "création" de Bloom's). Étant donné que les mathématiques s'enrichissent avec la discussion, j'aime que les élèves soient répartis en groupes de trois pour le lancement.
La liste est une série de changements par rapport au lancement, dont on se souvient facilement au fur et à mesure que la routine se déroule. J'aime générer ces changements en anticipant les stratégies possibles des élèves, puis en me demandant quelle nouvelle difficulté les obligerait à s'adapter. Je fais attention à ne pas déplacer le problème trop ou trop rapidement. Cela créerait un sentiment de turbulence pour les apprenants qui cherchent encore à s'orienter. J'attends que les idées, les stratégies et les arguments se répandent dans la salle avant de prendre la parole et de partager ce "Oups, j'ai oublié…". Je demande souvent aux élèves de partager leurs réponses ou de faire une promenade dans la classe avant que la liste ne soit employée. De cette façon, nous honorons la pensée avant de leur demander de la réaffirmer.
Soyez courageux. Il m'arrive souvent de penser à de nouvelles choses qui ne figuraient pas sur ma liste initiale, ou bien les élèves suggèrent ce qu'ils pensent être la prochaine étape. N'ayez pas peur de vous écarter de votre liste. Ce confort fait partie du processus qui consiste à s'éloigner de la routine et à se diriger vers un enseignement "dans le moment".
Quelques exemples
Lancement: Deux amis se partagent un biscuit. Quelle quantité chacun des amis recevra-t-il ?
Liste:
- OJO, Je voulais dire qu'il y a trois amis
- OJO, il y a en fait quatre amis
- OJO, vous avez apporté deux biscuits à partager
Lancement : Construisez trois fractions différentes qui sont entre zéro et une demie.
Liste :
OJO, elles ne peuvent pas avoir un numérateur de un.
OJO, elles doivent toutes avoir des dénominateurs impairs
OJO, elles ne peuvent pas être réduites
Lancement : Cinq amis partent en voyage dans une voiture à cinq places. De combien de façons peuvent-ils choisir les sièges pour leur voyage ?
Liste :
OJO, Alex a besoin de s'asseoir à côté de Keaton.
OJO, Keaton a besoin d'un siège côté fenêtre
OJO, Alex n'a pas de permis de conduire.
(Cette article est une traduction des propos de Nat Banting)